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A simple and general formalism for the calculation of the “effective mass” necessary for the computation of
tunneling corrections by simple one-dimensional models is presented. It is shown that this formalism does
not require a priori assumptions regarding the molecularity of the reaction or the relative orientation of the
reactive fragments. This method, which we call the Generalized Polyatomic Method, GPM, was used to
compute tunneling corrections using the simple Wigner tunneling formalism for the six reactions: H′ +
H-H f H′-H + H, CH4 + H f CH3 + H2, CH4 + OH f CH3 + H2O, CH3-CH3 + OH f CH3-CH2 +
H2O and HCNf CNH. The results obtained in this work indicate that using the “reduced mass” from a
direct vibrational analysis of the transition state instead of the “effective mass” could lead to serious errors
in the computation of tunneling corrections. This result is very critical given the popularity of this procedure
among researchers computing tunneling corrections in gas-phase reactions. Finally, it is also shown that the
simple collinear tri-atomic approach (CTM) developed by Johnston is a special case of our more general
GPM method. Given its simplicity and computational efficiency, we recommend GPM as the method of
choice when computing “effective masses” to be used in one-dimensional tunneling corrections.

1. Introduction

Since the realization by Hund 63 years ago1 that tunneling
might be important in the kinetics of chemical reactions, the
chemical literature has been flooded with fundamental work
focusing on theoretical predictions as well as experimental
confirmation of the role tunneling plays in chemistry.2 In
particular, semiclassical formalisms such as “Transition State
Theory” (TST)3 corrected by tunneling effects have been applied
successfully in the theoretical treatment of the kinetics of
reactions involving polyatomic systems.4

One of the major assumptions of TST is that in the vicinity
of the transition state, motion along a one-dimensional minimum
potential energy path (MEP) can be treated as a classical
translational motion. This motion can be separated to a good
approximation under certain conditions from the rest of the
degrees of freedom defining the reactive systems. Along the
MEP, the potential energy is a function of a reaction coordinate
s which may be though of as a measure of the progress of the
reaction. Usually,s is defined so that it is equal to-∞ at the
reactants side, zero at the transition state and+∞ at the products
side. In certain cases, the potential energy will exhibit a “concave
down” shape that will lead to significant tunneling. Tunneling
is the result of quantum effects that tend to couple the reaction
path coordinate to the remaining degrees of freedom of the
reacting system due to curvature along the reaction path. In these

cases, the separation of the reaction coordinate from the other
degrees of freedom is no longer valid, and tunneling can occur
through a variety of paths involving all coordinates. To
overcome the limitations of the classical treatment, the sepa-
rability of the reaction path is assumed and the TST rate constant
at a particular temperatureT is corrected by a transmission
coefficientκ(T). Accordingly, the general form of the corrected
TST rate constant is

wherekSCTST(T) is the semiclassical transition state theory rate
constant, andkTST(T) is the rate constant computed by the
transition state theory formalism in either its conventional3 or
variational form.5 Classically, reactants going through a MEP
and with a reaction coordinate value ofs will cross the barrier
and reach products only if they have an energyE greater than
the potential energyV0(s). In quantum mechanics there is a finite
probability that reactants withE < V0(s) will tunnel through
the barrier and become products. In general, the transmission
coefficientκ(T) can be written as the ratio between the thermal
averages of the quantum and classical transmission probabilities

wherePC(E) andPQ(E) are the classical and quantum mechan-
ical transmission probabilities respectively,â ) 1/kBT, andkB

is Boltzman’s constant. In eq 2,PC(E) is zero wheneverE e
V0 and unity otherwise. An approximate expression forPQ(E)
can be obtained making use of the WKB semiclassical ap-
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kSCTST(T) ) κ(T)‚kTST(T) (1)

κ(T) )
∫0

∞
PQ(E)‚exp-âE‚dE

∫0

∞
PC(E)‚exp-âE‚dE

(2)
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proximation.6 Inserting the appropriate expressions for the
transmission probabilities into eq 2, the following relation for
κ(T) is obtained7

where: Θ(E) ) 1/p∫s<
s>[2‚µeff(s)‚(V0(s) - E)]1/2, s< ands> are

the classical turning points andµeff(s) is the “effective reduced
mass” which is determined by the curvature of the minimum
energy path (see below). Analytical solutions for eq 3 are very
difficult to derive even when simple potential functions are used
in the evaluation ofΘ(E). Significant advances leading to the
development of highly accurate models for the computation of
the quantum mechanical probabilityPQ (and consequentlyκ(T))
have been made in the past.6e,7,8

Closed form expressions forκ(T) have been found in some
cases where the shape of the potential has been approximated
to certain forms. Thus, Bell9 has found a very simple formula
for κ(T) assuming a one-dimensional potential barrier with the
shape of an inverted parabola. A similar expression was obtained
by Wigner in 1932 using a method which is, to a first
approximation, applicable to any form of potential curve.10

Eckart, was able to provide closed forms forPQ(T) assuming
symmetrical and unsymmetrical variants of an analytical
potential energy function.11 The expressions obtained forPQ-
(T) can then be used to compute the transmission factorκ(T)
by solving the integral in eq 3 numerically. Given their
simplicity and relatively small computational cost, these crude
models are widely used by researchers throughout the world.
This is particularly true in the case of Eckart’s formalism, which
in some instances has allowed scientists to predict rate constants
in reasonable agreement with experimental results.

Tunneling models such as Eckart’s, Bell’s, or Wigner’s
require knowledge of the potential energy barrier height, as well
as the absolute value of the imaginary frequencyν‡ correspond-
ing to the transition vector at the transition state. To obtainν‡,
it is customary to perform a quantum chemical calculation of
the harmonic vibrational frequencies using the fully optimized
geometry corresponding to the transition state. The direct use
of this frequency leads most of the time to incorrect tunneling
corrections, given that the vibrational analysis performed by
the quantum chemical calculation implicitly uses a “reduced
mass” µred, that does not correspond to the “effective mass”
µeff(s), necessary in the calculation of tunneling corrections.
Following the harmonic approximation, the expression forν‡

can be written as

whereF‡ is the force constant corresponding to motion along
the transition vector. It isF‡ and not the imaginary frequency
that should be extracted from the quantum chemistry calculation.
This quantity, together with the correct value forµeff(s) are
inserted into eq 4 and the resulting value ofν‡ is then used
with the method of preference in order to obtain the necessary
tunneling corrections.

In this work, we discuss a general approximate formalism
that leads to simple analytical expressions forµeff(s) which can
be used with simple one-dimensional tunneling models such as
the ones developed by Bell, Wigner, and Eckart. It is shown
that at the lowest level of approximation,µeff(s) depends only

on the masses and geometric parameters of the reactive system
as well as the tangent to the minimum reaction path. The next
level of approximation requires information related to the
curvature vector along the reaction path.

Section 2, describes the formalism for computingµeff(s). An
example dealing with the simple collinear reaction between an
atom and a diatomic is presented in Section 3. In Section 4, the
method is applied to 6 different polyatomic cases used as
prototypes for a polyatomic reactive system. Imaginary frequen-
cies as well as tunneling corrections at 200 and 300 K computed
with Wigner’s crude model are also presented and the results
are compared with other approximations. Finally, Section 5
summarizes the conclusions of this work.

The main goal of this work is to develop a rigorous and
consistent way of computing the “effective mass” to be used in
one-dimensional tunneling methodologies. However, there is no
attempt to recommend the use of crude one-dimensional
tunneling methodologies over their accurate multidimensional
counterparts. As explained later, whenever possible, tunneling
corrections must be calculated using multidimensional formal-
isms. Unfortunately, these calculations can become prohibitively
expensive in systems with a sizable number of electrons, where
information such as energetics and vibrational frequencies
should be extracted from the reaction path typically computed
with highly correlated ab initio levels of theory. In these cases,
scientists have no alternative but to rely on simplified methods
that involve the calculation of tunneling corrections based on
one-dimensional formalisms. It is within this framework that
the method to compute the “effective mass” presented in this
work becomes highly useful.

2. Computation of the Effective Mass in the Treatment of
One-Dimensional Tunneling

Let’s consider a system of N atoms with mass mR and
Cartesian coordinatesxRi (with R ) 1, ..., N; andi ) x, y, z).
The kinetic energy of the system is then given by the following
relation12

where ∆XḂ ) {∆x̆Ri} is the displacement vector and∆XḂ )
{∆x̆Ri} the corresponding velocity vector in Cartesian coordi-
nates space. In eq 5,∆x̆Ri ) ∂∆xRi/∂t are the components of the
velocity along the Cartesian coordinates,M̃ is a 3N × 3N
diagonal matrix with the atomic masses along the diagonal, and
the superscript “t” indicates a transpose.

A displacement along a set of 3N-6 internal coordinatesQB
) {q1, q2, q3, ..., q3N-6} can be related to the corresponding
displacement along the Cartesian coordinates using the following
equation

whereB̃ is Wilson’s B-matrix12 with dimensions 3N-6× 3N.
BecauseB̃ is a rectangular matrix, it does not have a direct
inverse. Usually, the inverse transformation of eq 6 is obtained
using the Morse-Penrose inverse transposed B-matrix13

where the superscript “-1” indicates a matrix inverse andG̃ is
Wilson’s G-matrix12 with dimensions 3N-6× 3N-6

κ(T) ) â‚eâV0(s)‚∫0

∞
e-â‚E‚PQ(E) dE )

â‚eâ‚V0(s)‚∫0

∞
e-â‚E‚e-2Θ(E)dE (3)

ν‡ ) 1
2πx F‡

µeff(s)
(4)

T ) 1
2

∆XḂt‚M̃‚∆XḂ (5)

∆QB ) B̃‚∆XB (6)

(B̃t)-1 ) G̃-1‚B̃‚M̃-1 (7)

G̃ ) B̃‚M̃-1‚B̃t (8)
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Insertion of eq 7 into eq 6 gives

Using eqs 5-9, the kinetic energy in internal coordinates can
be written as

where∆QḂ ) ∂∆QB/∂t is the velocity vector in internal coordi-
nates. For a reactive system moving along the MEP, and with
a reaction coordinate,s, this vector can be obtained from the
following expression

In addition, for any points0 on the reaction path, the following
Taylor expansion can be used to find the displacement vector
∆QB(s) in internal coordinates corresponding to a new points

whereQB(s0) is the internal coordinate vector corresponding to
s0, νb(0)(s) ) ∂QB(s)/∂s ) -gb(s)/|gb(s)| is the tangent vector that
describes the direction of the displacement along the reaction
path,νb(1)(s) ) ∂2QB(s)/∂s2 ) ∂νb(0)(s)/∂s is the curvature vector
that describes the direction and magnitude of the bending of
the reaction path away from a straight line,gb (s) is the gradient
vector (equal to∂V(QB(s))/∂QB(s)) and |gb(s)| is the norm of the
gradient. In eq 12, the gradient, tangent, and curvature vectors
are computed atQB(s0).

Taking the derivative of eq 12 with respect to the reaction
coordinates, and introducing the result into eq 11 it follows

Substitution of eq 13 into eq 10 gives the following relation
for the kinetic energy in terms of the velocity of the reaction
coordinates̆

The term in square brackets in eq 14 can be interpreted as the
“effective mass”µeff(s) associated with a virtual particle moving
along the reaction coordinate with velocitys̆

As explained by Bell14 among others, it is the “effective mass”
and not the “reduced mass” which must be used in the treatment
of tunneling corrections. As can be observed from eq 15, the
magnitude ofµeff(s) changes through the MEP and it depends
(to second order in the expansion) on the degree of coupling
between the tangent and curvature vectors along the reaction
path.

Behavior at the Transition State.The immediate result of
the formalism discussed above is that even in the case of the
simplest one-dimensional tunneling treatment, knowledge of the
reaction path is needed sinceµeff(s) must be computed through-

out the path. However, given the significant computational
expense that this approach might incur, especially in the case
of large polyatomic systems, a further approximation can be
made, in which tunneling is assumed to occur only in the
vecinity of the transition state (through the top of the potential
barrier) and that the “effective mass” is considered to be constant
along this region and equal to its value at the transition state.
In these cases, only information regarding relative energies and
vibrational frequencies of reactants, transition states, and
products is necessary. Under these assumptions, a more compact
expression forµeff(s) can be obtained. Thus, in the limit of
infinitesimally small displacements along the path (s f 0) and
in the vicinity of the transition state (s0 f 0), eq 15 becomes

At the transition state, the gradient is zero, and the tangent vector
νb(0) must be chosen to be the eigenvector of the Hessian with
negative eigenvalue (transition vector).15 Notice that casting
expressions 15 and 16 in Cartesian coordinates leads to

and

respectively, whereνbx
(0), νbx

(1), and sx are the tangent vector,
curvature vector and reaction coordinate in Cartesians. As with
expression 16, the tangent vector in eq 18 becomes the
eigenvector corresponding to the negative eigenvalue of the
Hessian matrix at the transition state.

Expression 16 is similar to the one given by Johnston in his
book2o where a linear relationship between all velocity com-
ponents in internal coordinates and the corresponding velocity
F̆ of a “progress variable” has been assumed (as well as a fixed
center of mass and angular variables)

with ∆QḂ ) AB‚F̆, and the vectorAB contains linear proportional-
ity coefficients difficult to determine in the case of polyatomic
systems. Johnston has used this approach successfully in the
treatment of collinear tri-atomic reactions such as the abstraction

where the coefficientsAB can easily be obtained. We call this
approach the Collinear Tri-atomic Method (CTM). According
to this approach, for a collinear tri-atomic reaction X+ YZ f
XY + Z, the effective massµeff is given by the following
relation2o

wheremX, mY, andmZ are the masses of atoms X, Y, and Z
respectively, and the parameterc is defined as the ratio of the
rate of change of the Y-X bond (dRXY) to the rate of change
of the Y-Z bond (dRYZ)

µeff ) νb(0)t(0)‚G̃-1‚νb(0)(0) (16)

µeff(s) ) [(νbx
(0)(s0

x) + νbx
(1)(s0

x)‚(sx - s0
x) + ‚‚‚)t‚M̃‚(νbx

(0)(s0
x) +

νbx
(1)(s0

x)‚(sx - s0
x) + ‚‚‚)] (17)

µeff(s) ) [(νbx
(0)(s0

x))t ‚M̃‚(νbx
(0)(s0

x))] (18)

µeff ) ABt ‚G̃-1‚AB (19)

H + H-H′ f H-H + H′ (R)

µeff )
mXmZ(1 + c)2 + mZmYc2 + mXmY

(mX + mY + mZ)(1 + c2)
(20)

c )
dRXY

dRYZ
(21)

∆XB ) (B̃t)-1‚∆QB ) (G̃-1‚B̃‚M̃-1)‚∆QB (9)

T ) 1
2
∆QḂt‚G̃-1‚∆QḂ (10)

∆QḂ ) ∂∆QB
∂t

) ∂∆QB
∂s

‚∂s
∂t

) ∂∆QB
∂s

‚s̆ (11)

∆QB(s) ) QB(s) - QB(s0) ) νb(0)(s0)‚(s - s0) +
1
2

νb(1)(s0)‚(s - s0)
2 + ‚‚‚ (12)

∆QḂ(s) ) [νb(0)(s0) + νb(1)(s0)‚(s - s0)+ ‚‚‚]‚s̆ (13)

T ) 1
2
[(νb(0)(s0) + νb(1)(s0)‚(s - s0) + ‚‚‚)t‚G̃-1‚(νb(0)(s0) +

νb(1)(s0)‚(s - s0) + ‚‚‚)] ‚‚‚s̆2 (14)

µeff(s) ) [(νb(0)(s0) + νb(1)(s0)‚(s - s0) + ‚‚‚)t‚G̃-1‚(νb(0)(s0) +

νb(1)(s0)‚(s - s0) + ‚‚‚)] (15)
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In the case of hydrogen abstraction reactions such as A+ H-B
f A-H + B, where A and B are polyatomic fragments,
Johnston treats the reaction as a collinear tri-atomic system2n,2o

where the fragments A and B are treated as massive particles
X and Z respectively, with a mass equal to the sum of the atomic
masses making up the fragments.

The formalism presented in this work provides a general and
simple way of computing the linear coefficients (obtained from
the tangent vector along the reaction path) without making a
priori assumptions about the molecularity of the reactive system,
or the relative orientation of the fragments and atoms involved
in the reaction. We call this approach the Generalized Poly-
atomic Method (GPM). The “effective mass” as computed by
eq 15 is a function of the reaction coordinate and it is only
constant in the vicinity of the transition state (top of the potential
energy barrier). Consequently, assuming a constantµeff when
computing tunneling corrections might lead to wrong results,
especially in cases where the curvature of the potential energy
surface is large, as in heavy-light-heavy abstraction reactions.
In these cases, more sophisticated (and computationally inten-
sive) procedures are necessary (see ref 8). Consequently, the
use of eq 16 must be exercised with care, keeping in mind that
it is just useful within the approximations adopted by one-
dimensional tunneling models such as the ones proposed by
Wigner, Bell, and Eckart. Furthermore, it is important to
remember that the GPM formalism in its simplest form given
by eq 16 might not be useful when applied to the calculation
of rate constants of reactions characterized by negligible or
nonexistent barriers, where the “dynamical bottleneck” has to
be computed with the Variational Transition State Theory.

As mentioned before, a common (and in general inappropri-
ate) practice is to use the “reduced mass” associated with the
mode corresponding to the imaginary frequency based on a
harmonic vibrational analysis of the transition structure. This
approach is called the Harmonic Vibrational Analysis (HVA)
in this work.

3. The Collinear Tri-Atomic Atom Exchange Case

The reaction between an atom X and a diatomic Y-Z
characterized by a collinear transition state and producing X-Y
+ Z is one of the simplest cases for which analytical expressions
for µeff can be provided.2o In this case, there are only two internal
coordinates participating in the reaction:RXY andRYZ; the bond
lengths between atoms X and Y and atoms Y and Z, respec-
tively. The G-matrix as well as its inverse is given by the
following relations

where

Substituting eq 22 into eq 16 leads to

whereν1 andν2 are the components of the unit tangent vector,
and the expressions for the different elements ofG̃ are given
by eq 23.

Test Case: H-Atom Abstraction Reaction H + H-H′
f H-H + H′. The H-atom abstraction H+ H-H′ f H-H +
H′ is the simplest collinear tri-atomic system. This reaction has
been extensively studied experimentally throughout the years.16

In 1935, Pelzer and Wigner17 developed a theoretical formalism
to compute the rate constant of this reaction for a particular
temperature. In 1961 Johnston and Rapp2n used a variant of a
Sato empirical surface developed by Weston18 together with the
CTM method previously described, where the tunneling cor-
rection was computed as an average over a series of cuts through
the energy surface parallel to the tangent to the minimum energy
path at the transition state. In 1968, Shavitt et al.,2j performed
ab initio molecular orbital calculations to compute the potential
energy surface for this reaction as well as isotope effects where
tunneling corrections were computed with an Eckart function.
Quickert and Le Roy19 used a scaled version of Shavitt’s surface
to compute the transmission coefficients numerically, obtaining
excellent agreement with experimental isotope effects. Marcus20

has analyzed the validity of the assumption regarding the
vibrational adiabaticity of this reaction. In 1971, Koeppl21

computed rate constants for this reaction using transition state
theory and a very accurate ab initio surface calculated by Liu.22

The same year, Truhlar and Kuppermann23 reported the results
of their accurate quantum mechanical calculations. More recent
work by Garrett, Truhlar and Schatz,24 reported tunneling
corrections and isotope effects for the H3 system using quantum
dynamical calculations in the temperaure range 200 K-300 K.
In general, the extensive literature available on this reaction
clearly indicates the important role of tunneling, especially at
low temperatures.

For reaction (R1) mX ) mY ) mZ ) 1 amu, andν1 ) - ν2.
Thus, eqs 23 and 24 give anµeff equal to 1/3 amu, in contrast
to the value of 1 amu obtained by the HVA method. It is
important to note that Johnston’s CTM approach also predicts
a µeff equal to 1/3. This is not surprising given that the collinear
approach is just a particular case of our more general GPM
method.

For this reaction, and the ones involving polyatomic reactants
to be described in the next section, full geometry optimizations
of reactants and transition states as well as harmonic vibrational
frequency calculations were carried out at the MP2/6-311G-
(2d,2p) level of theory. In addition, single point energy
calculations at the PMP4(SDTQ)/6-311G(3df,2p)//MP2/6-311G-
(2d,2p) were used in the calculation of the reaction barrier for
the H-atom abstraction reaction H+ H-H′ f H-H + H′. This
level of theory has been found to provide kinetics parameters
in reasonable agreement with experiments for a series of 16
hydrogen abstraction reactions.4j All calculations were carried
out with the Gaussian 98 suite of programs.25 Transition state
optimized geometries and vibrational frequencies are provided
in the Supporting Information section. In the case of the collinear
reaction H+ H-H′ f H-H + H′, the rate constants,k(T),
were computed using the following Canonical Transition State
Theory expression3

where∆E is the potential energy barrier including zero-point
energy corrections andQX(T) is the total partition function for
species X. In addition, Wigner’s tunneling correctionκ(T), was

G̃ ) [g11 g12

g21 g22]; G̃-1 ) 1

(g11‚g22 - g12
2 )[g22 -g21

-g12 g11 ] (22)

g11 ) 1
mX

+ 1
mY

; g12 ) g21 ) -1; andg22 ) 1
mY

+ 1
mZ

(23)

µeff ) 1

(g11‚g22 - g12
2 )

‚[g22‚ν1
2 - 2‚g21‚ν1‚ν2 + g11‚ν2

2] (24) k(T) ) κ(T) × kBT

h
× QTS(T)

QH(T)QH
2(T)

× exp(-∆E
kBT) (25)
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computed using the following expression10

where all the parameters have the same meaning as before.
Figure 1 shows the ratio between the rate constants for the

H + H-H′ reaction computed by our GPM method (kGPM(T))
and the accurate rate constants computed by Garrett, Truhlar
and Schatz (kGTS(T)) using the Centrifugal Sudden (CS) ap-
proximation26 in the temperature range 200 K-300 K. Corre-
sponding ratios between and the HVA rate constants (kHVA(T))
and the accurate calculations of Garret, Thrular, and Schatz are
also shown in Figure 1. In this temperature range, tunneling
processes contribute strongly to the overall rate constant. As
can be observed in Figure 1 both, the GPM and the HVA rate
constants computed with the simple Wigner tunneling correction
are consistently lower than the values reported by the accurate
calculations of Garret, Truhlar, and Schatz. This shortcoming
in Wigner’s and similar formalisms when treating tunneling in
reactions exhibiting sizable curvature such as in H+ H2 is
expected and has been discussed at length in the literature (see
for instance ref 23). Given that the purpose of this paper is not
to validate a particular tunneling methodology but to demon-
strate the need for a better treatment of the effective tunneling
mass, we feel that the results obtained with the simple Wigner
approach are quite appropriate to achieve this goal. It is
interesting to note the overall improvement observed when the
effective mass as computed by the GPM method is used in the
tunneling treatment. Even at low temperatures, the deviation
of k(T)GPM with respect to the accurate rate constantk(T)GTS is
significantly smaller than the corresponding deviation for
k(T)HVA (kGPM(T)/kGTS(T) ) 0.18 vskHVA(T)/kGTS(T) ) 0.07 at
200 K). These results indicate the importance of the proper
treatment of the effective tunneling mass, even for simplified
models such as the ones developed by Wigner and Eckart.

4. Reactions Involving Polyatomic Systems

The collinear tri-atomic approach, as originally proposed by
Johnston and referred to as CTM1 in this work, assumes a

symmetric transition structure A-X-B, where the distance
A-B between the heavy fragments changes just slightly in order
to keep the center of mass constant, while atom X moves
considerably between A and B. Under these constrains, the
change in the A-X bond length is equal to the negative of the
change in the X-B bond length (dRAX ) -dRXB). This method
then assumes thatν1 ) -ν2 as in the case of the reaction H+
H-H′ f H-H + H′ discussed in the previous section. To make
this method more general, one could in principle relax this
constrain and compute the actual values of the displacements
ν1 andν2 from the eigenvector corresponding to the imaginary
frequency at the transition state. Given that the collinear tri-
atomic approach is still assumed, we refer to this method as
CTM2.

To show the importance of computing the appropriate
tunneling effective mass, we have computed effective masses,
imaginary vibrational frequencies, and Wigner tunneling cor-
rections at 200 and 300 K for the following 5 hydrogen
abstraction reactions: H+ H2, CH4 + H, CH4 + OH, CH2Br2

+ OH, and CH3CH3 + OH using the HVA, CTM1, CTM2,
and the GPM approaches described above. In addition, the
isomerization reaction HCNf CNH is also studied. Table 1
lists the effective masses and the corresponding imaginary
frequencies for the 6 reactions computed with the different
methods. As previously discussed, the effective mass predicted
by the methods CM1, CM2, and GPM in the case of the
collinear abstraction H+ H2 are exactly the same (1/3 amu.).
This is in sharp contrast to the result obtained from the harmonic
vibrational approximation calculation, where the effective mass
is predicted to be 1 amu. As seen in Table 1, this overestimation
in the effective mass leads to an imaginary frequency ap-
proximately 1467 cm-1 lower than the predicted by the colliner
tri-atomic methods (CM1 and CM2) as well as our general
polyatomic method (2002 cm-1 vs 3469 cm-1).

With the exception of the H-atom abstraction CH4 + H, a
significant difference between the masses computed with HVA
and the more realistic models CM1, CM2 and GPM is observed.
This is particularly true in the case of the H-atom abstraction
reaction CH2Br2 + OH f CHBr2 + H2O, where the mass
predicted by the HVA method is approximately 6 times smaller

Figure 1. Ratiokx(T)/kGTS(T) (x ) HVA, GPM) as a Function of Temperature for the Reaction H+ H2 f H2 + H in the Temperature Range 200
K-300 K.

κ(T) ) 1 + 1
24(hν‡

kBT)2

(26)
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than the value predicted by the GPM method (see Table 1). It
is interesting to note that the CTM1 method predicts effective
masses close to a value of 1/2 amu. for most of the H-atom
abstraction reactions with the exception of the symmetric
collinear case H+ H2. This is not surprising, given that CTM1
assumes a symmetric transition state characterized by a signifi-
cant linear displacement of the hydrogen atom between the two
heavier (and fixed) fragments. As observed in Table 1, a better
agreement with the GPM results is obtained in the case of the
CTM2 method, where the collinear approach is still used but
the fragments are allowed to move. However, in the case of
CH2Br2 + OH, it is observed that CTM2 still underestimates
the effective mass by a factor of 2 when compared to the GPM
result. In addition, the CTM methods cannot be used in reactions
such as the HCNf CNH isomerization reaction, where a
collinear tri-atomic treatment is not appropriate. Thus, given
the simplicity and generality of the GPM method, there does
not seem to be of any advantage to use the less realistic CTM
formalisms when computing effective tunneling masses. There-
fore, we recommend GPM as the method of choice.

Table 2 lists Wigner tunneling corrections computed at 200
and 300 K for the 6 prototype reactions using the 4 different
methodologies. As expected, tunneling is more significant at
200 K where it dominates the dynamics of these reactions.
Overall, the trends observed are a direct reflection of the trends
observed with effective masses. Tunneling corrections computed
with the HVA masses deviate considerably from the values
obtained with GPM masses. This is particularly true at 200 K
where HVA predicts tunneling corrections that are approxi-
mately a factor 2-4 off with respect to the GPM values. These
results are critical in view of the widespread use of the HVA
method among scientists computing tunneling corrections with
approximations such as Wigner or Eckart formalisms. Similar
trends are observed with the CTM1 results. In the case of the
CTM2, a better agreement with the GPM results is obtained,
where maximum deviations of a factor of 2 are observed even
at 200 K. This is in keeping with the fact that effective masses
computed with CTM2 are closer to the values obtained with
the more realistic model GPM.

The case of the H-atom abstraction CH4 + H f CH3 + H2

merits some discussion. The results in Table 2 indicate that
Wigner tunneling corrections computed with HVA, CTM2 and
GPM masses are close in value. This can be traced back to
effective masses predicted to be close to 1 amu by the three

different methods (see Table 1), indicating that this reaction
behaves as a collinear tri-atomic system where the tunneling
particle is essentially the hydrogen atom.

5. Conclusions

A general and simple procedure to calculate the “effective
mass” necessary in the computation of tunneling corrections
using one-dimensional formalisms such as the ones developed
by Bell, Wigner, and Eckart has been presented. We call this
procedure the general polyatomic method, GPM. This method
is sufficiently general and does not assume a priori molecularity
or relative orientation of the reactants. It is shown that using
the “reduced mass” from a direct vibrational analysis (HVA
method in this work) of the transition state instead of the
“effective mass” could lead to serious errors in the computation
of tunneling corrections. This result is very critical given the
popularity of the HVA method among researchers computing
tunneling corrections in gas-phase reactions. Finally, it is also
shown that the simple collinear tri-atomic approach (CTM)
developed by Johnston is a special case of our more general
GPM method. Given its simplicity and computational efficiency
we recommend GPM as the method of choice when computing
“effective masses” to be used in one-dimensional tunneling
corrections.
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