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A simple and general formalism for the calculation of the “effective mass” necessary for the computation of
tunneling corrections by simple one-dimensional models is presented. It is shown that this formalism does
not require a priori assumptions regarding the molecularity of the reaction or the relative orientation of the
reactive fragments. This method, which we call the Generalized Polyatomic Method, GPM, was used to
compute tunneling corrections using the simple Wigner tunneling formalism for the six reactions: H
H-H—H'-H + H, CH; + H— CH3 + H,, CH; + OH — CH; + H,O, CH;—CHz; + OH — CH;—CH, +

H,O and HCN— CNH. The results obtained in this work indicate that using the “reduced mass” from a
direct vibrational analysis of the transition state instead of the “effective mass” could lead to serious errors
in the computation of tunneling corrections. This result is very critical given the popularity of this procedure
among researchers computing tunneling corrections in gas-phase reactions. Finally, it is also shown that the
simple collinear tri-atomic approach (CTM) developed by Johnston is a special case of our more general
GPM method. Given its simplicity and computational efficiency, we recommend GPM as the method of
choice when computing “effective masses” to be used in one-dimensional tunneling corrections.

1. Introduction cases, the separation of the reaction coordinate from the other
degrees of freedom is no longer valid, and tunneling can occur
through a variety of paths involving all coordinates. To
overcome the limitations of the classical treatment, the sepa-
rability of the reaction path is assumed and the TST rate constant
at a particular temperatur€ is corrected by a transmission
coefficient«(T). Accordingly, the general form of the corrected
TST rate constant is

Since the realization by Hund 63 years agjoat tunneling
might be important in the kinetics of chemical reactions, the
chemical literature has been flooded with fundamental work
focusing on theoretical predictions as well as experimental
confirmation of the role tunneling plays in chemistryn
particular, semiclassical formalisms such as “Transition State
Theory” (TSTF corrected by tunneling effects have been applied
successfully in the theoretical treatment of the kinetics of CTSTj __ TST
reactions involving polyatomic systerfs. ® (D) = «()-k=(T) @

One of the major assumptions of TST is that in the vicinity \yherekSCTSYT) is the semiclassical transition state theory rate
of the transition state, motion along a one-dimensional minimum constant, anck™T(T) is the rate constant computed by the
potential energy path (MEP) can be treated as a classicaliansition state theory formalism in either its conventiéreal
translational motion. This motion can be separated to & good yariational formé Classically, reactants going through a MEP
approximation under certain conditions from the rest of the ang with a reaction coordinate valueill cross the barrier
degrees of freedom defining the reactive systems. Along the anq reach products only if they have an eneEggreater than
MER, the potential energy is a function of a reaction coordinate e potential energyo(s). In quantum mechanics there is a finite
s which may be though of as a measure of the progress of the yropapility that reactants witE < Vo(s) will tunnel through
reaction. Usuallys is defined so that it is equal tew at the  tne parrier and become products. In general, the transmission
reactants side, zero at the transition state-amdat the products coefficient«(T) can be written as the ratio between the thermal

side. In certain cases, the potential energy will exhibit a “concave ayerages of the quantum and classical transmission probabilities
down” shape that will lead to significant tunneling. Tunneling

is the result of quantum effects that tend to couple the reaction f°°p (E)-exp "E-dE
path coordinate to the remaining degrees of freedom of the (T =22 Q )
reacting system due to curvature along the reaction path. In these meC(E)' exp—ﬂE. dE
0
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1-D Treatment of Tunneling Corrections

proximation® Inserting the appropriate expressions for the
transmission probabilities into eq 2, the following relation for
«(T) is obtained

(M) = 0. [“ePEP(E) dE =
pre . [“e PE.e 2EGE (3)

where: O(E) = 1A [s.5[2-ue(9)*(Vo(s) — E)]¥2 s< ands- are
the classical turning points andsx(s) is the “effective reduced
mass” which is determined by the curvature of the minimum
energy path (see below). Analytical solutions for eq 3 are very
difficult to derive even when simple potential functions are used
in the evaluation o®(E). Significant advances leading to the
development of highly accurate models for the computation of
the quantum mechanical probabilRy (and consequently(T))
have been made in the p&st.®

Closed form expressions fa(T) have been found in some
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on the masses and geometric parameters of the reactive system
as well as the tangent to the minimum reaction path. The next
level of approximation requires information related to the
curvature vector along the reaction path.

Section 2, describes the formalism for computinrg(s). An
example dealing with the simple collinear reaction between an
atom and a diatomic is presented in Section 3. In Section 4, the
method is applied to 6 different polyatomic cases used as
prototypes for a polyatomic reactive system. Imaginary frequen-
cies as well as tunneling corrections at 200 and 300 K computed
with Wigner’s crude model are also presented and the results
are compared with other approximations. Finally, Section 5
summarizes the conclusions of this work.

The main goal of this work is to develop a rigorous and
consistent way of computing the “effective mass” to be used in
one-dimensional tunneling methodologies. However, there is no
attempt to recommend the use of crude one-dimensional
tunneling methodologies over their accurate multidimensional

cases where the shape of the potential has been approximate&ounterparts- As explained later, whenever possible, tunneling

to certain forms. Thus, Bélhas found a very simple formula
for «(T) assuming a one-dimensional potential barrier with the

corrections must be calculated using multidimensional formal-
isms. Unfortunately, these calculations can become prohibitively

shape of an inverted parabola. A similar expression was obtained®XPensive in systems with a sizable number of electrons, where

by Wigner in 1932 using a method which is, to a first
approximation, applicable to any form of potential cuife.
Eckart, was able to provide closed forms f(T) assuming
symmetrical and unsymmetrical variants of an analytical
potential energy functiok: The expressions obtained f&%-

(T) can then be used to compute the transmission fadyr

by solving the integral in eq 3 numerically. Given their
simplicity and relatively small computational cost, these crude

models are widely used by researchers throughout the world. . . .
y y d h 2. Computation of the Effective Mass in the Treatment of

Qne-DimensionaI Tunneling

This is particularly true in the case of Eckart’s formalism, whic

in some instances has allowed scientists to predict rate constant:

in reasonable agreement with experimental results.
Tunneling models such as Eckart’s, Bell's, or Wigner's

require knowledge of the potential energy barrier height, as well

as the absolute value of the imaginary frequericgorrespond-

ing to the transition vector at the transition state. To obtéjn

it is customary to perform a quantum chemical calculation of

the harmonic vibrational frequencies using the fully optimized

geometry corresponding to the transition state. The direct use

of this frequency leads most of the time to incorrect tunneling
corrections, given that the vibrational analysis performed by
the quantum chemical calculation implicitly uses a “reduced
mass” ureq, that does not correspond to the “effective mass”
ueti(S), necessary in the calculation of tunneling corrections.
Following the harmonic approximation, the expressionifor
can be written as

Fi
/"eff(s)

1
VT o

(4)

whereF* is the force constant corresponding to motion along
the transition vector. It i§* and not the imaginary frequency

that should be extracted from the quantum chemistry calculation.

This quantity, together with the correct value fagx(s) are
inserted into eq 4 and the resulting valueéfis then used

with the method of preference in order to obtain the necessary

tunneling corrections.
In this work, we discuss a general approximate formalism
that leads to simple analytical expressionsiggns) which can

information such as energetics and vibrational frequencies
should be extracted from the reaction path typically computed
with highly correlated ab initio levels of theory. In these cases,
scientists have no alternative but to rely on simplified methods
that involve the calculation of tunneling corrections based on
one-dimensional formalisms. It is within this framework that
the method to compute the “effective mass” presented in this
work becomes highly useful.

Let's consider a system of N atoms with masg and
Cartesian coordinates, (with oo = 1, ..., N; andi = X, y, 2.
The kinetic energy of the system is then given by the following
relation'?

%A?(‘-M-A)?

T (5)

where AX = {Axy} is the displacement vector amtiX =
{AX4} the corresponding velocity vector in Cartesian coordi-
nates space. In eq Bxy = 0AXi/ot are the components of the
velocity along the Cartesian coordinatdd, is a 3N x 3N
diagonal matrix with the atomic masses along the diagonal, and
the superscript “t” indicates a transpose. N

A displacement along a set of 3N-6 internal coordind@es
={qu, 02 Js ..., an—6} Can be related to the corresponding
displacement along the Cartesian coordinates using the following
equation

AQ=B-AX (6)

whereB is Wilson’s B-matri¥2 with dimensions 3N-6x 3N.
BecauseB is a rectangular matrix, it does not have a direct
inverse. Usually, the inverse transformation of eq 6 is obtained
using the Morse-Penrose inverse transposed B-matrix

()

where the superscript*1” indicates a matrix inverse ar(@ is

B)*'=G*BM*

be used with simple one-dimensional tunneling models such asWilson’s G-matrix? with dimensions 3N-6< 3N-6

the ones developed by Bell, Wigner, and Eckart. It is shown
that at the lowest level of approximatiome(s) depends only

G=BM B (8)
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Insertion of eq 7 into eq 6 gives out the path. However, given the significant computational
- - I expense that this approach might incur, especially in the case
AX=(B) ~AQ= (G *B-M )-AQ 9) of large polyatomic systems, a further approximation can be

made, in which tunneling is assumed to occur only in the
vecinity of the transition state (through the top of the potential
barrier) and that the “effective mass” is considered to be constant
1, % ~q = along this region and equal to its value at the transition state.
T=3AQ-G ~AQ (10) In these cases, only information regarding relative energies and
~ vibrational frequencies of reactants, transition states, and
whereAQ = aAé/at is the velocity vector in internal coordi- ~ products is necessary. Under these assumptions, a more compact
nates. For a reactive system moving along the MEP, and with expression foluer(s) can be obtained. Thus, in the limit of
a reaction coordinates, this vector can be obtained from the infinitesimally small displacements along the pagh 0) and
following expression in the vicinity of the transition states{ — 0), eq 15 becomes

Using egs 59, the kinetic energy in internal coordinates can
be written as

& 0AQ _ 9AQ 3s _ 3AQ =v0)-6 %590 16
AQ=" = s (11) et (0) (0) (16)

At the transition state, the gradient is zero, and the tangent vector
7@ must be chosen to be the eigenvector of the Hessian with
negative eigenvalue (transition vectét)Notice that casting
expressions 15 and 16 in Cartesian coordinates leads to

In addition, for any poing, on the reaction path, the following
Taylor expansion can be used to find the displacement vector
AQ(s) in internal coordinates corresponding to a new paint

AQS) = Q9 ~ A = 7%) (5~ ) + 1) = [(5.0) + 7. D(Q)-(s, — L) + --)-F1-(7, O +
U9+ (12) 7,0(8)(s— ) + ] (17)

whereé(so) is the internal coordinate vector corresponding to and
S0, VO(s) = 9Q()/9s = —G(9)/[G(9)] is the tangent vector that o -0
describes the direction of the displacement along the reaction Uer(S) = [(Vx( )(%))t 'M'(Vx( )(5%))] (18)
path,v)(s) = 92Q(s)/9s? = dv(0)(s)/3s is the curvature vector ) o - a
that describes the direction and magnitude of the bending of "espectively, wher@(©), fo ), ands; are the tangent vector,
the reaction path away from a Stralght ||@ys) |S the grad|ent curvature vector aﬂd reaction COOI’dInate n CarteSIanS. AS W|th
vector (equal toBV((S(s))/Bé(s)) and[g(9)| is the norm of the expression 16, the tangent vector in eq 1_8 becomes the
gradient. In eq 12, the gradient, tangent, and curvature vectors€igenvector corresponding to the negative eigenvalue of the
are computed aﬁ(so). Hessian matrix at the transition state.

Taking the derivative of eq 12 with respect to the reaction Expression 16 is similar to the one given by Johnston in his

coordinates, and introducing the result into eq 11 it follows ~ POOK® where a linear relationship between all velocity com-
ponents in internal coordinates and the corresponding velocity

A(S(S) = [3(0)(50) + ,7(1)(50).(5 —g)+ s (13) p of a “progress variable” has been assumed (as well as a fixed
center of mass and angular variables)
Substitution of eq 13 into eq 10 gives the following relation

for the kinetic energy in terms of the velocity of the reaction Uett = AG A (19)
coordinates - - -
with AQ = A-p, and the vectoA contains linear proportional-
_1 .0 —~(1) t,A—1,(=(0) ity coefficients difficult to determine in the case of polyatomic
T=Z + (s—g) + )G +
2[(1/ () + V() (5~ %) ) (7 (%) systems. Johnston has used this approach successfully in the
7M(s) (5= 5) + ++)] -8 (14) treatment of collinear tri-atomic reactions such as the abstraction
H+H-H —H-H+H (R)

The term in square brackets in eq 14 can be interpreted as the
“effective mass’ue(s) associated with a virtual particle moving

along the reaction coordinate with velociy where the coefficient®\ can easily be obtained. We call this

approach the Collinear Tri-atomic Method (CTM). According
— (=) (e Vofa oA -1 = (0) to this approach, for a collinear tri-atomic reactiontXyz —
#en(®) = [(7(S) + VH(S)(S ‘:"’) LA S i XY + Z, the effective masgier is given by the following
7):(s—s) + )] (15)  relatiort®

As explained by Beltt among others, it is the “effective mass” m,m,(1 + 0%+ mszCZ + mym,
and not the “reduced mass” which must be used in the treatment Ueft = > (20)
of tunneling corrections. As can be observed from eq 15, the (my +my +m,)(1+c)

magnitude ofue(s) changes through the MEP and it depends

(to second order in the expansion) on the degree of coupling Wheremx, my, andm; are the masses of atoms X, Y, and Z

between the tangent and curvature vectors along the reactiod €SPectively, and the parameteis defined as the ratio of the

path. rate of change of the ¥X bond (dRxy) to the rate of change
Behavior at the Transition State. The immediate result of ~ ©f the Y—Z bond (Ryz)

the formalism discussed above is that even in the case of the drR

simplest one-dimensional tunneling treatment, knowledge of the =X

= (21)
reaction path is needed sinegy(s) must be computed through- dRy;
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In the case of hydrogen abstraction reactions such-ad#-B Test Case: H-Atom Abstraction Reaction H + H—H'

— A—H + B, where A and B are polyatomic fragments, — H—H + H'. The H-atom abstraction H H—H' — H—H +

Johnston treats the reaction as a collinear tri-atomic sy8#m  H' is the simplest collinear tri-atomic system. This reaction has

where the fragments A and B are treated as massive particlespeen extensively studied experimentally throughout the yéars.

X and Z respectively, with a mass equal to the sum of the atomic |n 1935, Pelzer and Wign¥€rdeveloped a theoretical formalism

masses making up the fragments. to compute the rate constant of this reaction for a particular
The formalism presented in this work provides a general and temperature. In 1961 Johnston and Repysed a variant of a

simple way of computing the linear _coefficients_(obtained f_rom Sato empirical surface developed by Wedtgagether with the
the tangent vector along the reaction path) without making @ o1\ method previously described, where the tunneling cor-
priori assumptions about the molecularity of the reactive system, rection was computed as an average over a series of cuts through

or the relatl\(e orientation Of the fragments and atom§ involved the energy surface parallel to the tangent to the minimum energy
in the reaction. We call this approach the Generalized Poly- L . !
i ,, . ” path at the transition state. In 1968, Shavitt efigberformed
atomic Method (GPM). The “effective mass” as computed by - . . .
ab initio molecular orbital calculations to compute the potential

eq 15 is a function of the reaction coordinate and it is only tace for thi i Il as isot ffects wh
constant in the vicinity of the transition state (top of the potential energy surface for this reaction as well as 1Solope €etiects where
tunneling corrections were computed with an Eckart function.

energy barrier). Consequently, assuming a congigntvhen X . -
computing tunneling corrections might lead to wrong results, Quickertand Le Roy used a scaled version of Shavitt's surface

especially in cases where the curvature of the potential energy!© compute the transm_ission Co_efficient_s numerically, obtaining
surface is large, as in heavy-light-heavy abstraction reactions.excellent agreement with experimental isotope effects. Métcus
In these cases, more sophisticated (and computationally inten-has analyzed the validity of the assumption regarding the
sive) procedures are necessary (see ref 8). Consequently, theibrational adiabaticity of this reaction. In 1971, Koeppl
use of eq 16 must be exercised with care, keeping in mind thatcomputed rate constants for this reaction using transition state
it is just useful within the approximations adopted by one- theory and a very accurate ab initio surface calculated by.iu.
dimensional tunneling models such as the ones proposed byThe same year, Truhlar and Kupperméimeported the results
Wigner, Bell, and Eckart. Furthermore, it is important to of their accurate quantum mechanical calculations. More recent
remember that the GPM formalism in its simplest form given work by Garrett, Truhlar and Schat%,reported tunneling
by eq 16 might not be useful when applied to the calculation corrections and isotope effects for the $ystem using quantum
of rate constants of reactions characterized by negligible or dynamical calculations in the temperaure range 2680 K.
nonexistent barriers, where the “dynamical bottleneck” has to |n general, the extensive literature available on this reaction
be computed with the Variational Transition State Theory.  clearly indicates the important role of tunneling, especially at
As mentioned before, a common (and in general inappropri- |o,y temperatures.
ate) practice is to use the “reduced mass” associated with the
mode corresponding to the imaginary frequency based on a
harmonic vibrational analysis of the transition structure. This
approach is called the Harmonic Vibrational Analysis (HVA)
in this work.

For reaction (R) mx = my = mz = 1 amu, andvy = — va.
Thus, egs 23 and 24 give agy equal to 1/3 amu, in contrast
to the value of 1 amu obtained by the HVA method. It is
important to note that Johnston’s CTM approach also predicts
auerr €qual to 1/3. This is not surprising given that the collinear

3. The Collinear Tri-Atomic Atom Exchange Case approach is just a particular case of our more general GPM

. . . method.
The reaction between an atom X and a diatomiezY . . . . .
characterized by a collinear transition state and producinyy X For this reaction, and the ones involving polyatomic reactants

+ Z is one of the simplest cases for which analytical expressions to be described in the next section, full geometry optimizations
for e can be provided In this case, there are only two internal ~ Of reactants and transition states as well as harmonic vibrational
coordinates participating in the reactioﬁ)'(Y andRYZ; the bond frequency calculations were carried out at the MP2/6-311G-

lengths between atoms X and Y and atoms Y and Z, respec-(2d,2p) level of theory. In addition, single point energy
tively. The G-matrix as well as its inverse is given by the calculations at the PMP4(SDTQ)/6-311G(3df,2p)//MP2/6-311G-

following relations (2d,2p) were used in the calculation of the reaction barrier for
the H-atom abstraction reactionHH—H' — H—H + H'. This
=~ 1911 92| -1 1 O» —Ox level of theory has been found to provide kinetics parameters
G= G = (22) ; ; ; ;
Op1 Unp (QyGpp — )l 912 Y11 in reasonable agreement with experiments for a series of 16
ez ¥l hydrogen abstraction reactiofisAll calculations were carried
out with the Gaussian 98 suite of prografhg.ransition state

where L . L . .
optimized geometries and vibrational frequencies are provided
1 1 1 1 in the Supporting Information section. In the case of the collinear
0,=—+-"0,=0,=—"1andg,,=—+— (23) reaction H+ H—H' — H—H + H’, the rate constant(T),
M My my M were computed using the following Canonical Transition State
Th ioh
Substituting eq 22 into eq 16 leads to eory expressi
T Q™M AE
1 2 2 KT = KeT —==| (25
Mot = 5 [GoV1 = 2:Gpy vy vy + Gurval (24) (1) = &(T) x h X Aot o X T (25)
T (O %) Q(NQKT ks

wherev; andv; are the components of the unit tangent vector, whereAE is the potential energy barrier including zero-point
and the expressions for the different element&adre given energy corrections an@*(T) is the total partition function for
by eq 23. species X. In addition, Wigner’s tunneling correctidi), was
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Figure 1. Ratiok(T)/ksts(T) (x = HVA, GPM) as a Function of Temperature for the Reactior-HH, — H, + H in the Temperature Range 200
K—300 K.

computed using the following expressién symmetric transition structure -AX—B, where the distance
A—B between the heavy fragments changes just slightly in order
1 [hy¥\? to keep the center of mass constant, while atom X moves
k(M) =1+ ﬂ(@) (26) considerably between A and B. Under these constrains, the

change in the A X bond length is equal to the negative of the
change in the X B bond length (Rxx = —dRxg). This method
then assumes thai = —v, as in the case of the reactionH
H—H'— H—H + H’ discussed in the previous section. To make
IIhis method more general, one could in principle relax this

where all the parameters have the same meaning as before.
Figure 1 shows the ratio between the rate constants for the
H + H—H' reaction computed by our GPM methddP{t™(T))
and the accurate rate constants computed by Garrett, Truhla A :
and Schatz K°TXT)) using the Centrifugal Sudden (CS) ap- constrain and compute the actual values of the displacements
proximatiorf® in the temperature range 2004800 K. Corre- v1 andv; from the eigenvector corre;pondlng to the imaginary
sponding ratios between and the HVA rate constat¥y(T)) frequgncy at the t.ransfmon state. Given that the .colllnear tri-
and the accurate calculations of Garret, Thrular, and Schatz are?l0MiC approach is still assumed, we refer to this method as
also shown in Figure 1. In this temperature range, tunneling
processes contribute strongly to the overall rate constant. As To show the importance of computing the appropriate
can be observed in Figure 1 both, the GPM and the HVA rate tunneling effective mass, we have computed effective masses,
constants computed with the simple Wigner tunneling correction imaginary vibrational frequencies, and Wigner tunneling cor-
are consistently lower than the values reported by the accuraterections at 200 and 300 K for the following 5 hydrogen
calculations of Garret, Truhlar, and Schatz. This shortcoming abstraction reactions: H H,, CH; + H, CH; + OH, CH:Br»
in Wigner's and similar formalisms when treating tunneling in + OH, and CHCH; + OH using the HVA, CTM1, CTM2,
reactions exhibiting sizable curvature such as intH; is and the GPM approaches described above. In addition, the
expected and has been discussed at length in the literature (sessomerization reaction HCN> CNH is also studied. Table 1
for instance ref 23). Given that the purpose of this paper is not lists the effective masses and the corresponding imaginary
to validate a particular tunneling methodology but to demon- frequencies for the 6 reactions computed with the different
strate the need for a better treatment of the effective tunneling methods. As previously discussed, the effective mass predicted
mass, we feel that the results obtained with the simple Wigner by the methods CM1, CM2, and GPM in the case of the
approach are quite appropriate to achieve this goal. It is collinear abstraction H- H; are exactly the same (1/3 amu.).
interesting to note the overall improvement observed when the This is in sharp contrast to the result obtained from the harmonic
effective mass as computed by the GPM method is used in thevibrational approximation calculation, where the effective mass
tunneling treatment. Even at low temperatures, the deviation is predicted to be 1 amu. As seen in Table 1, this overestimation
of k(T)GPM with respect to the accurate rate constgi)®'s is in the effective mass leads to an imaginary frequency ap-
significantly smaller than the corresponding deviation for proximately 1467 cm! lower than the predicted by the colliner
k(T)HVA (KEPM(T)/KSTY(T) = 0.18 vsk™VA(T)/kCTYT) = 0.07 at tri-atomic methods (CM1 and CM2) as well as our general
200 K). These results indicate the importance of the proper polyatomic method (2002 cré vs 3469 cntl).
treatment of the effective tunneling mass, even for simplified  \yjth the exception of the H-atom abstraction £# H, a
models such as the ones developed by Wigner and Eckart.  gjgnificant difference between the masses computed with HVA
and the more realistic models CM1, CM2 and GPM is observed.
This is particularly true in the case of the H-atom abstraction
The collinear tri-atomic approach, as originally proposed by reaction CHBr, + OH — CHBr, + H,0, where the mass
Johnston and referred to as CTM1 in this work, assumes apredicted by the HVA method is approximately 6 times smaller

4. Reactions Involving Polyatomic Systems
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TABLE 1: Effective Masses (in amu.) and Imaginary Frequencies (in cm?) for Six Different Transiton States Computed with
the Harmonic Vibrational Analysis Approach (HVA), the Collinear Tri-atomic Methods (CTM1 and CTM2) and the
Generalized Polyatomic Method (GPM) Proposed in This Work

transition state UHVA UcTva Uctve UcPM VEVA VéTMl VéTMz V(iaPM
H—H—H 1.00 0.333 0.333 0.333 2002.8 3469.0 3469.0 3469.0
CHs—H—H 1.133 0.471 1.131 0.820 1703.0 2642.9 1704.5 2002.0
CH;—H—OH 1.089 0.486 2.050 2.181 1992.9 2986.0 1452.2 1407.8
CHBr,—H—OH 1.079 0.495 3.093 6.857 2199.8 3246.9 1298.9 872.4
CH3CH,—H—OH 1.133 0.489 2.013 2.663 1686.8 2566.6 1265.6 1100.3
HCN— CNH 1.172 3.982 1283.0 695.9

TABLE 2: Wigner Tunnellng Corrections for Six Different Reactions Computed at 200 and 300 K with the Harmonic
Vibrational Analysis Approach (HVA), the Collinear Tri-atomic Methods (CTM1 and CTM2) and the Generalized Polyatomic
Method (GPM) Proposed in This Work

reaction (20K (20K 20K (20K P 0K 0K 0K
HVA cTML cTM2 GPM HVA CTML cT™2 GPM
H-H+H 9.66 26.99 26.99 26.99 4.85 12.55 12.55 12.55
CH;—H+H 7.26 16.09 7.28 9.66 3.78 7.71 3.79 4.85
CHz—H + OH 9.58 20.26 5.56 5.28 4.81 9.56 3.02 2.90
CHBr,—H + OH 11.45 23.77 4.64 2.64 5.65 11.12 2.62 1.73
CH3CH,—H + OH 7.15 15.23 4.46 3.62 3.73 7.32 2.54 2.16
HCN— CNH 4.56 - - 2.05 2.58 - - 1.46

than the value predicted by the GPM method (see Table 1). It different methods (see Table 1), indicating that this reaction
is interesting to note that the CTM1 method predicts effective behaves as a collinear tri-atomic system where the tunneling
masses close to a value of 1/2 amu. for most of the H-atom particle is essentially the hydrogen atom.

abstraction reactions with the exception of the symmetric

collinear case H- H,. This is not surprising, given that CTM1 5. Conclusions

assumes a symmetric transition state characterized by a signifi-
cant linear displacement of the hydrogen atom between the two
heavier (and fixed) fragments. As observed in Table 1, a better
agreement with the GPM results is obtained in the case of the
CTM2 method, where the collinear approach is still used but
the fragments are allowed to move. However, in the case of
CHBr, + OH, it is observed that CTM2 still underestimates
the effective mass by a factor of 2 when compared to the GPM
result. In addition, the CTM methods cannot be used in reactions
such as the HCN— CNH isomerization reaction, where a
collinear tri-atomic treatment is not appropriate. Thus, given
the simplicity and generality of the GPM method, there does
not seem to be of any advantage to use the less realistic CTM
formalisms when computing effective tunneling masses. There-
fore, we recommend GPM as the method of choice.

Table 2 lists Wigner tunneling corrections computed at 200
and 300 K for the 6 prototype reactions using the 4 different
methodologies. As expected, tunneling is more significant at
200 K where it dominates the dynamics of these reactions.
Overall, the trends observed are a direct reflection of the trends
observed with effective masses. Tunneling corrections computed
with the HVA masses deviate considerably from the values
obtained with GPM masses. This is particularly true at 200 K
where HVA predicts tunneling corrections that are approxi-
mately a factor 24 off with respect to the GPM values. These
results are critical in view of the widespread use of the HVA
method among scientists computing tunneling corrections with
approximations such as Wigner or Eckart formalisms. Similar
trends are observed with the CTM1 results. In the case of the
CTM2, a better agreement with the GPM results is obtained,
where maximum deviations of a factor of 2 are observed even
at 200 K. This is in keeping with the fact that effective masses
computed with CTM2 are closer to the values obtained with
the more realistic model GPM.

The case of the H-atom abstraction £H H — CHsz + H»
merits some discussion. The results in Table 2 indicate that (1) Hund, F.Z. Phys 1927 43, 805. _
Wigner tunneling corrections computed with HVA, CTM2and §25)7_S(E(f’Bfgrrr:,”fﬁﬁ”\iﬁéis(salfoﬁﬁli??_'”ﬁ»@féohcénﬁl_aég@iaf'z,szco?2{3)
GPM masses are close in value. This can be traced back toyjgner, E.z. Phys. Chem. B932 19, 203. (d) Cremer, E.; Polanyi, M.
effective masses predicted to be close to 1 amu by the threePhys. Chem. B932 19, 443. (e) Bell, R. PProc. R. Soc. A1933 139,

A general and simple procedure to calculate the “effective
mass” necessary in the computation of tunneling corrections
using one-dimensional formalisms such as the ones developed
by Bell, Wigner, and Eckart has been presented. We call this
procedure the general polyatomic method, GPM. This method
is sufficiently general and does not assume a priori molecularity
or relative orientation of the reactants. It is shown that using
the “reduced mass” from a direct vibrational analysis (HVA
method in this work) of the transition state instead of the
“effective mass” could lead to serious errors in the computation
of tunneling corrections. This result is very critical given the
popularity of the HVA method among researchers computing
tunneling corrections in gas-phase reactions. Finally, it is also
shown that the simple collinear tri-atomic approach (CTM)
developed by Johnston is a special case of our more general
GPM method. Given its simplicity and computational efficiency
we recommend GPM as the method of choice when computing
“effective masses” to be used in one-dimensional tunneling
corrections.
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